解答题在△ABC中,∠C=60°,BC=a,AC=b,a+b=16.
(1)试写出△ABC的面积S与边长a的函数关系式.
(2)当a等于多少时,S有最大值?并求出这个最大值.
网友回答
解:(1)∵a+b=16,∴b=16-a(0<a<16)
S=absinC=a(16-a)sin60°=(16a-a2)=-(a-8)2+16(0<a<16)
(2)由(1)知,当a=8时,S有最大值16.解析分析:(1)由a+b=16,得b=16-a,利用面积公式可表示△ABC的面积S与边长a的函数关系式;(2)先配方,再利用二次函数求最值的方法求解即可.点评:本题考查三角形的面积公式,考查配方法求二次函数的最值,属于基础题.