已知直线的极坐标方程为,圆M的参数方程为(其中θ为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆M上的点到直线的距离的最小值.

发布时间:2020-07-31 14:35:54

已知直线的极坐标方程为,圆M的参数方程为(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.

网友回答

解:(Ⅰ)以极点为原点,极轴为x轴正半轴建立直角坐标系.(1分)
∵∴,∴ρsinθ+ρcosθ=1.(2分)
∴该直线的直角坐标方程为:x+y-1=0.(3分)
(Ⅱ)圆M的普通方程为:x2+(y+2)2=4(4分)
圆心M(0,-2)到直线x+y-1=0的距离.(5分)
所以圆M上的点到直线的距离的最小值为.(7分)
解析分析:(Ⅰ)以极点为原点,极轴为x轴正半轴建立直角坐标系,利用和角的正弦函数,即可求得该直线的直角坐标方程;(Ⅱ)圆M的普通方程为:x2+(y+2)2=4,求出圆心M(0,-2)到直线x+y-1=0的距离,即可得到圆M上的点到直线的距离的最小值.

点评:本题考查极坐标方程与直角坐标方程,参数方程与普通方程的互化,考查点线距离公式的运用,属于基础题.
以上问题属网友观点,不代表本站立场,仅供参考!