直线y=-x与椭圆C:=1(a>b>0)交于A、B两点,以线段AB为直径的圆恰好经过椭圆的右焦点,则椭圆C的离心率为A.B.C.-1D.4-2

发布时间:2020-07-31 18:32:28

直线y=-x与椭圆C:=1(a>b>0)交于A、B两点,以线段AB为直径的圆恰好经过椭圆的右焦点,则椭圆C的离心率为A.B.C.-1D.4-2

网友回答

C
解析分析:以AB为直径的圆过椭圆的右焦点,也过左焦点,以这两个焦点A、B两点为顶点得一矩形,求出矩形宽与长,利用椭圆的定义,即可求得椭圆C的离心率.

解答:由题意,以AB为直径的圆过椭圆的右焦点,也过左焦点,以这两个焦点A、B两点为顶点得一矩形.直线y=-x的倾斜角为120°,所以矩形宽为c,长为c.由椭圆定义知矩形的长宽之和等于2a,即c+c=2a.∴故选C.

点评:本题重点考查圆与椭圆的综合,考查椭圆的几何性质,解题的关键是判断以这两个焦点A、B两点为顶点得一矩形.
以上问题属网友观点,不代表本站立场,仅供参考!