已知二次函数y=ax2+bx+c(a≠0),给出下列四个判断:(1)a>0;(2)2a+b=0;(3)b2-4ac>0;(4)a+b+c<0;以其中三个判断为条件,余

发布时间:2020-07-30 06:33:53

已知二次函数y=ax2+bx+c(a≠0),给出下列四个判断:(1)a>0;(2)2a+b=0;(3)b2-4ac>0;(4)a+b+c<0;以其中三个判断为条件,余下一个判断作结论,其中真命题的个数有A.1?个B.2?个C.3?个D.4?个

网友回答

C
解析分析:由①a>0确定开口方向,②2a+b=0可以得到对称轴为x=1,而由b2-4ac>0可以推出顶点在第四象限,所以可以判定④是否正确;由①a>0确定开口方向,②2a+b=0可以得到对称轴为x=1,而④a+b+c<0可以得到顶点在第四象限,所以可以判定③是否正确;由①a>确定开口方向0,③b2-4ac>0,④a+b+c<0可以得到顶点在第三、四象限,所以可以判定②错误;由②2a+b=0得到对称轴为x=1,而③b2-4ac>0可以得到与x轴有两个交点,由④a+b+c<0可以得到顶点在第四象限,由此可以判定①是否正确.

解答:(1)∵①a>0,∴开口向上,∵②2a+b=0,∴对称轴为x=1,∵③b2-4ac>0,∴顶点在第四象限,∴④a+b+c<0正确;(2)∵①a>0,∴开口向上,∵②2a+b=0,∴对称轴为x=1,∵④a+b+c<0,∴顶点在第四象限,∴③b2-4ac>0正确;(3)∵①a>0,∴开口向上,∵③b2-4ac>0,④a+b+c<0,∴顶点在第三、四象限,∴②2a+b=0错误;(4)∵②2a+b=0,∴对称轴为x=1,∵③b2-4ac>0,④a+b+c<0,∴顶点在第四象限,∴与x轴有两个交点,∴①a>0正确.故选C.

点评:本题主要考查了二次函数y=x2+bx+c(a≠0)中,用符号语言表述的4个判断的数学含义及其因果关系,熟练掌握二次函数的性质是解题关键.
以上问题属网友观点,不代表本站立场,仅供参考!