一元二次方程:x2-2(a+1)x+a2+4=0的两根是x1,x2,且|x1-x2|=2,则a的值是A.4B.3C.2D.1
网友回答
C
解析分析:由根与系数的关系,求出两根的和与两根的积,再由|x1-x2|等于(x1+x2)2-4x1?x2的算术平方根进行计算.
解答:由根与系数的关系可得:x1+x2=2(a+1),x1?x2=a2+4.由|x1-x2|=2,得(x1-x2)2=4,即(x1+x2)2-4x1?x2=4.则4(a+1)2-4(a2+4)=4,解得a=2.故选C.
点评:本题考查一元二次方程根与系数的关系,记住关系式是解本题的关键.