题库大全
查看
题库大全
题库
考试培训
财会类题库
网络知识
作业答案
作业习题
蚂蚁庄园答案
当前位置:
题库大全
作业答案
已知直线x+2y=2分别与x轴、y轴相交于A,B两点,若动点P(a,b)在线段AB上,则ab的最大值为________.
已知直线x+2y=2分别与x轴、y轴相交于A,B两点,若动点P(a,b)在线段AB上,则ab的最大值为________.
发布时间:2020-08-01 01:45:59
已知直线x+2y=2分别与x轴、y轴相交于A,B两点,若动点P(a,b)在线段AB上,则ab的最大值为________.
网友回答
解析分析:
由基本不等式≥(a>0,b>0)的变形式ab≤(a>0,b>0),可求得ab的最大值.
解答:
由题意知a+2b=2,且a>0,b>0,所以ab=(a?2b)≤=.故
以上问题属网友观点,不代表本站立场,仅供参考!
上一条:
三角形ABC是等边三角形,点D、E分别在BC,AC上,且BD=CE,AD与BE相交于点M,试证:BD2=ADxDM.
下一条:
规定[x]表示不超过x的最大整数,f(x)=,若方程f(x)=ax+1有且仅有四个实数根,则实数a的取值范围是A.[-1,-)B.[-.-)C.[-,-)D.[-,-
资讯推荐
已知α,β,γ均为锐角,且tanα=,tanβ=,,则α,β,γ的和为A.B.C.D.
设f(x)为定义在R上的奇函数,当x>0时,f(x)=log3(1+x),则f(-2)=A.-1B.-3C.1D.3
函数f?(x)=A.是奇函数B.是偶函数C.非奇非偶D.既奇既偶
已知x1,x2是关于x的一元二次方程x2-(m-1)x-(m-1)=0的两个解,设y=f(m)=(x1+x2)2-x1x2,求函数y=f(m)的解析式及值域.
如果命题P:?∈{?},命题Q:??{?},那么下列结论不正确的是A.“P或Q”为真B.“P且Q”为假C.“非P”为假D.“非Q”为假
各项均为正数的等比数列{{an}的前n项和为Sn,若a3=2,S4=5S2,则a1的值为________,S4的值为________.
直线y=x与椭圆=1的交点在x轴上的射影恰好是椭圆的焦点,则椭圆C的离心率为A.B.C.D.
函数y=f(x)与y=g(x)有相同的定义域,且对定义域中的任意x,有f(-x)+f(x)=0,g(x)?g(-x)=1,且g(0)=1,则函数是A.奇函数B.偶函数
已知命题P:不等式lg[x(1-x)+1]>0的解集为{x|0<x<1};命题Q:在三角形ABC中,∠A>∠B是cos2(+)<cos2(+)成立的必要而非充分条件,
已知椭圆的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l
已知双曲线的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为________.
函数的定义域是A..B..C..D..
已知ABCD-A1B1C1D1是边长为1的正方体,求:(1)直线AC1与平面AA1B1B所成角的正切值;(2)二面角B-AC1-D的大小;(3)求点A到平面BDC1的
已知f(x)=x2-2017x+8052+|x2-2017x+8052|,则f(1)+f(2)+f(3)+…+f(2013)=________.
椭圆为定值,且的左焦点为F,直线x=m与椭圆相交于点A、B,△FAB的周长的最大值是12,则该椭圆的离心率是________.
在平面直角坐标系中,不等式ax+(a-2)y+1<0表示的是直线ax+(a-2)y+1=0的下方区域,则实数a的取值范围为A.a>2B.a>0且a≠2C.a<0D.a
某两个物体的三视图如图所示.请分别说出它们的形状
在空间四边形ABCD各边上分别取E、F、G、H四点,如果EF、GH交于点P,那么A.P∈ACB.P∈BDC.P∈ABD.P∈CD
已知函数f(x)=-x3+ax2-4(a∈R).若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为.(Ⅰ)设f(x)的导函数是f'(x),若s,t∈[-
如果0直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为θ1和θ2,则A.sin2θ1+sin2θ2≥1B.sin2θ1+sin2θ2≤1C.si
若实数x,y满足约束条件,目标函数z=tx+y有最小值2,则t的值可以为A.3B.-3C.1D.-1
复数()2010的值为A.1B.-1C.iD.-i
在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已
已知向量=(sin(A-B),sin(-A)),=(1,2sinB),?=-sin2C,其中A,B,C分别为△ABC的三边a,b,c所对的角.(Ⅰ)求角C的大小;(Ⅱ
把正方形ABCD沿对角线AC折起,构成以A、B??C、D四点为顶点的三棱锥,当点D到平面ABC的距离最大时,直线BD与平面ABC所成的角的大小为________.
有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(202+102)(1022+72)≥(
?x∈R,不等式ax2+ax+1>0,则实数a的取值范围是A.[0,4]B.[0,4)C.(-∞,0)D.[4,+∞)
设P={x|3<x<5},Q={x|m-1≤x≤m+2},若P?Q,则实数m的取值范围是________.
一个几何体的正视图和侧视图如图所示,则这个几何体的俯视图不可能是A.B.C.D.
设y1=loga(3x+1),y2=loga(-3x),其中0<a<1.(I)若y1=y2,求x的值;(Ⅱ)若y1>y2,求x的取值范围.
返回顶部