解答题设函数f(x)=|x-1|+|x-2|.
(1)画出函数y=f(x)的图象;
(2)若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a、b∈R)恒成立,求实数x的范围.
网友回答
解:(1)
(2)由|a+b|+|a-b|≥|a|f(x)
得
又因为
则有2≥f(x)
解不等式2≥|x-1|+|x-2|
得解析分析:本题考查的是分段函数的解析式求法以及函数图象的作法问题.在解答时对(1)要先将原函数根据自变量的取值范围转化为分段函数,然后逐段画出图象;对(2)先结和条件a≠0将问题转化,见参数统统移到一边,结合绝对值不等式的性质找出f(x)的范围,通过图形即可解得结果.点评:本题考查的是分段函数的解析式求法以及函数图象的作法问题.在解答过程中充分体现了分类讨论的思想、数形结合的思想、问题转化的思想.值得同学体会和反思.