甲、乙、丙三名射击运动员射中目标的概率分别为(0<a<1),三人各射击一次,击中目标的次数记为ξ.(1)求ξ的分布列及数学期望;(2)在概率P(ξ=i)(i=0,1,

发布时间:2020-08-01 01:56:10

甲、乙、丙三名射击运动员射中目标的概率分别为(0<a<1),三人各射击一次,击中目标的次数记为ξ.
(1)求ξ的分布列及数学期望;
(2)在概率P(ξ=i)(i=0,1,2,3)中,若P(ξ=1)的值最大,求实数a的取值范围.

网友回答

解:(1)P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0,1,2,3.,,,.
所以ξ的分布列为
ξ0123Pξ的数学期望为.
(2),,

由和0<a<1,得,即a的取值范围是.(10分)

解析分析:(1)先求出ξ的可能取值,然后分别求出ξ取值的概率,从而得到分布列,最后利用数学期望的公式进行求解即可;(2)要使P(ξ=1)的值最大,只需P(ξ=1)-P(ξ=0),P(ξ=1)-P(ξ=2),P(ξ=1)-P(ξ=3)都大于等于0,解之即可求出实数a的取值范围.

点评:此题重点在于准确理解好题意,还考查了离散型随机变量的定义及其分布列,利用期望定义求出离散型随机变量的期望.
以上问题属网友观点,不代表本站立场,仅供参考!