设P是60°的二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,则AB的长为:A.B.C.D.

发布时间:2020-07-31 14:56:17

设P是60°的二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,则AB的长为:A.B.C.D.

网友回答

C
解析分析:利用线面垂直作出二面角的平面角,然后在平面PAB中利用互补求出∠APB=120度,最后利用余弦定理解三角形PAB,得出AB的长为.

解答:解:设平面PAB与二面角的棱l交于点Q,连接AQ、BQ可得直线l⊥平面PAQB,所以∠AQB是二面角α-l-β的平面角,∠AQB=60°,故△PAB中,∠APB=180°-60°=120°,PA=4,PB=2,由余弦定理得:AB2=PA2+PB2-2PA?PBcos120°,,所以,故选C.

点评:本题考查直线与平面垂直的判定和二面角平面的定义,属于中档题,在做题时应该注意利用正、余弦定理解三角形所起的作用.
以上问题属网友观点,不代表本站立场,仅供参考!