如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点C(0,-5).(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标.(2)在上面所求

发布时间:2020-07-29 18:21:08

如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点C(0,-5).
(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标.
(2)在上面所求二次函数的对称轴上存在一点P(2,-2),连接OP,找出x轴上所有点M的坐标,使得△OPM是等腰三角形.

网友回答

解:(1)根据题意,
得,
解得,
∴二次函数的表达式为y=x2-4x-5,
当y=0时,x2-4x-5=0,
解得:x1=5,x2=-1,
∵点A的坐标是(-1,0),
∴B(5,0),
答:该二次函数的解析式是y=x2-4x-5,和它与x轴的另一个交点B的坐标是(5,0).

(2)令y=0,得二次函数y=x2-4x-5的图象与x轴
的另一个交点坐标B(5,0),
由于P(2,-2),符合条件的坐标有共有4个,
分别是M1(4,0)M2(2,0)M3(-2,0)M4(2,0),
答:x轴上所有点M的坐标是(4,0)、(2,0)、(-2,0)、(2,0),使得△OPM是等腰三角形.
解析分析:(1)把A(-1,0)和点C(0,-5)代入y=ax2-4x+c,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,当y=0时,x2-4x-5=0,求出方程的解即可得出它与x轴的另一个交点B的坐标;(2)根据等腰三角形的判定分OP=PM,OP=OM,PM=OM三种情况即可求出x轴上所有点M的坐标.

点评:本题主要考查对用待定系数法求二次函数的解析式,解二元一次方程组,解一元二次方程,等腰三角形的判定等知识点的理解和掌握,
以上问题属网友观点,不代表本站立场,仅供参考!