有4个不同的球,四个不同的盒子,把球全部放入盒内.
(1)共有多少种放法?
(2)恰有一个盒内不放球,有多少种放法?
(3)恰有一个盒内有2个球,有多少种放法?
(4)恰有两个盒内不放球,有多少种放法?
网友回答
解:(1)一个球一个球地放到盒子里去,每只球都有4种独立的放法,由分步乘法计数原理,放法共有:44=256(种).…(3分)
(2)为保证“恰有一个盒内不放球”,先选一个盒子,有种方法;再将4个球分成2,1,1三组,有种分法,然后全排列,由分步乘法计数原理,共有种放法;.…(6分)
(3)“恰有一个盒内有2个球”,即另外的三个盒子放2个球,每个盒子至多放1个球,即另外三个盒子中恰有一个空盒,因此,“恰有一个盒子放2球”与“恰有一个盒子不放球”是一回事,共有种放法;.…(9分)
(4)先从四个盒子中任意拿走两个,有种方法.然后问题转化为:“4个球,两个盒子,每个盒子必放球,有几种放法?”从放球数目看,可分为3,1和2,2两类:
第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有种放法;
第二类:有种放法.
由分步计数原理得“恰有两个盒子不放球”的放法有放法.…(12分)
解析分析:(1)一个球一个球地放到盒子里去,每只球都有4种独立的放法,由分步乘法计数原理,可得结论;(2)为保证“恰有一个盒内不放球”,先选一个盒子,再将4个球分成2,1,1三组,然后全排列,由分步乘法计数原理,可得结论;(3)“恰有一个盒子放2球”与“恰有一个盒子不放球”是一回事,由此可得结论;(4)先从四个盒子中任意拿走两个,有种方法.然后问题转化为:“4个球,两个盒子,每个盒子必放球,有几种放法?”从放球数目,进行分类讨论,即可得到结论.
点评:本题考查排列组合知识,考查利用数学知识解决实际问题,属于中档题.