f(x)=x3-x2-x的单调减区间是A.(-∞,-)B.(1,+∞)C.(-∞,-),(1,+∝)D.(-,1)

发布时间:2020-07-31 12:13:28

f(x)=x3-x2-x的单调减区间是A.(-∞,-)B.(1,+∞)C.(-∞,-),(1,+∝)D.(-,1)

网友回答

D
解析分析:求出导函数;令导函数小于0,求出自变量的范围即为函数的单调递减区间.

解答:f'(x)=3x2-2x-1,解3x2-2x-1<0得,所以单调区间是故选D

点评:本题考查函数的单调性与导函数符号的关系:f′(x)>0则f(x)单增;当f′(x)<0则f(x)递减.
以上问题属网友观点,不代表本站立场,仅供参考!