某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.
网友回答
解:(1)设分数在[70,80)内的频率为x,根据频率分布直方图,
有(0.01+0.015×2+0.025+0.005)×10+x=1,
可得x=0.3,所以频率分布直方图如图所示
(2)平均分为=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71
(3)学生成绩在[40,60)的有0.25×60=15人,
在[60,80)的有0.45×60=27人,
在[80,100)的有0.3×60=18人,
ξ的可能取值是0,1,2,3,4
则,,,,
所以ξ的分布列为:
∴
解析分析:(1)根据概率之和为1,即频率分布直方图的面积之和为1.(2)根据题意同一组数据常用该组区间的中点值作为代表,所以用每一组数据的中点值代表这一组数的平均数,即可求得.(3)从60名学生中随抽取2人,根据题意总记分可能为0、1、2、3、4.求出相应的概率,即可求得分布列和期望.
点评:此题把统计和概率结合在一起,比较新颖,也是高考的方向,应引起重视.