函数y=sin(x+10°)+cos(x+40°),(x∈R)的最大值是________.
网友回答
1
解析分析:先将函数化简,利用三角函数的性质,即可确定函数的最值.
解答:函数y=sin(x+10°)+cos(x+40°)=sin(x+10°)+cos(x+10°+30°)=sin(x+10°)+cos(x+10°)cos30°-sin(x+10°)sin30°=sin(x+10°)+cos(x+10°)=sin(x+70°)∵y=sin(x+70°)的最大值是1∴函数y=sin(x+10°)+cos(x+40°)(x∈R)的最大值是1故