解答题抛物线与过点M(0,-1)的直线l相交于A、B两点,O为原点.若OA和OB的斜率之和为1,
(1)求直线l的方程;?(2)求抛物线与直线l围成的图形的面积.
网友回答
解:(1)由题意可得直线l的斜率存在,设直线l的方程为y=kx-1,A(x1,y1),B(x2,y2),
所以联立直线与抛物线的方程可得:x2+2kx-2=0,
所以x1+x2=-2k,x1x2=-2,
因为OA和OB的斜率之和为1,即,
所以+=,
所以k=1,
所以直线方程为y=x-1.
(2)由(1)可得,
所以,
因为×|x1-x2|,
所以.解析分析:(1)由题意可得设直线l的方程为y=kx-1,联立直线与抛物线的方程可得:x2+2kx-2=0,根据韦达定理可得