填空题(文)等差数列{an}中,若a3+a4+a5=12,则4a3+2a6=________,若数列{bn}的前n项和为Sn=3n-1,则通项公式bn=________.
网友回答
24 2?3n-1解析分析:根据等差数列的性质化简已知的等式,得到a4的值,然后把所求式子利用等差数列的通项公式化简后,将a4的值代入即可求出值;当n=1时,S1=b1,根据前n项和公式求出b1的值;当n大于等于2时,利用递推式bn=Sn-Sn-1推导出通项公式bn,并把b1的值代入检验也满足,即可得到数列的通项公式.解答:∵a3+a4+a5=3a4=12,∴a4=4,则4a3+2a6=4(a1+2d)+2(a1+5d)=6(a1+3d)=6a4=24;∵数列{bn}的前n项和为Sn=3n-1,当n=1时,b1=S1=3-1=2,当n≥2时,bn=Sn-Sn-1=(3n-1)-(3n-1-1)=3n-1?(3-1)=2?3n-1.把b1代入满足此通项公式,则通项公式bn=2?3n-1.故