已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,集合A={m|

发布时间:2020-07-09 05:10:51

已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,集合A={m|f(m)<0},则













A.?m∈A,都有f(m+3)>0












B.?m∈A,都有f(m+3)<0











C.?m0∈A,使得f(m0+3)=0











D.?m0∈A,使得f(m0+3)<0

网友回答

A解析分析:由题意可得? a>0,且c<0,-2<<-,x=1为f(x)的一个零点,再由根与系数的关系可得,另一零点为 .可得A={m|<m<1},m+3>1,有f(m+3)>0恒成立,从而得出结论.解答:∵函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,故有 a>0,且c<0.∴0<a+a+c=2a+c,即 >-2,且 0>a+c+c=a+2c,即<-,因此有-2<<-,又f(1)=a+b+c=0,故x=1为f(x)的一个零点.由根与系数的关系可得,另一零点为 <0,所以有:A={m|<m<1}.所以,m+3>+3>1,所以有f(m+3)>0恒成立,故选A.点评:本题主要考查二次函数的性质,一元二次方程根的分布与系数的关系,体现了转化的数学思想,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!