解答题集合M={f(x)|存在实数t使得函数f(x)满足f(t+1)=f(t)+f(1)},下列函数(a,b,c,k都是常数)
(1)y=kx+b(k≠0,b≠0);(2)y=ax2+bx+c(a≠0);
(3)y=ax(0<a<1);(4)y=;
(5)y=sinx
属于M的函数有________.(只须填序号)
网友回答
解:∵集合M={f(x)|存在实数t使得函数f(x)满足f(t+1)=f(t)+f(1)},
∴对于(1),∵f(x)=kx+b(k≠0,b≠0),f(1)=k+b,f(x)+f(1)=kx+b+k+b=kx+k+2b
∵b≠0,
∴f(x+1)=k(x+1)+b=kx+b+k≠kx+k+2b=f(x)+f(1),故(1)?集合M;
对于(2),∵f(x)=ax2+bx+c(a≠0),故f(1)=a+b+c,
∴f(x+1)=a(x+1)2+b(x+1)+c=ax2+bx+c+2ax+a+b,令x=,则f(x+1)=ax2+bx+c+a+b+c=f(x)+f(1),故(2)满足题意;
对于(3),∵f(x)=ax(0<a<1),f(1)=a,
∴f(x+1)=ax+1=a?ax<ax<ax+a=f(x)+f(1),故(3)?集合M;
对于(4),f(x+1)=,f(1)=k,
假设存在x使得=+k,由于k≠0,
∴-+1=0,
∴x2+x+1=0,由于△=1-4=-3<0,
故方程x2+x+1=0无实数根,根(4)?集合M;
对于(5),∵f(x+1)=sin(x+1),f(1)=sin1,
?x=0,使得f(0+1)=f(0)+f(1)成立,故(5)∈集合M.
综上所述,属于M的函数有(2)(5).
故