已知数列{an}中a1=0,an+1=an+2n(n=1,2,3,…).(Ⅰ)求a2,a3,a4;(Ⅱ)求数列{an}的通项公式;(Ⅲ)已知数列{bn}满足(n∈N*

发布时间:2020-07-31 12:14:19

已知数列{an}中a1=0,an+1=an+2n(n=1,2,3,…).
(Ⅰ)求a2,a3,a4;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)已知数列{bn}满足(n∈N*),求数列{bn}的前n项和.

网友回答

解:(Ⅰ)由已知得a2=a1+2=2,a3=a2+4=6,a4=a3+6=12.
(Ⅱ)由已知得an+1-an=2n.所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=,
(Ⅲ)∵an=n2-n,
∴=n?2n,
∴数列{bn}前n项和Sn=1×2+2×22+3×23+…+n×2n,①
2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,②
①-②得-Sn=2+22+23+…2n-n×2n+1
∴,
∴Sn=2+(n-1)?2n+1.
解析分析:(Ⅰ)由a1=0,an+1=an+2n可求得a2、a3、a4;(Ⅱ)由于an-an-1=2(n-1),(n≥2),可采用累加法得:an=(an-an-1)+(an-1-an-2)+…(a2-a1)+a1,从而可求得an.(Ⅲ)由(Ⅱ)可求得an=n2-n,于是=n?2n,其前n项和Sn=1×2+2×22+3×23+…+n×2n,①2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,②将①②两个式子利用错位相减法即可求得数列{bn}的前n项和.

点评:本题考查数列的求和,着重考查数列的“累加法”求和与“错位相减法”求和,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!