已知:如图,在△ABC中,E是内心,延长AE交△ABC的外接圆于点D,弦AD交弦BC于点F.
(1)求证:DE=DB;
(2)当点A在优弧BC上运动时,若DE=2,DF=y,AD=x,求y与x之间的函数关系.
网友回答
解:(1)连接BE,
∵E为内心,
∴AE,BE分别为∠BAC,∠ABC的角平分线,
∴∠BED=∠BAE+∠EBA,∠EBA=∠EBC,∠BAE=∠EAC,
∴∠BED=∠EBC+∠EAC,∠EBD=∠EBC+∠CBD,
∵弧DC=弧DC,
∴∠EAC=∠CBD,
∴∠EBD=∠BED,
∴DE=BD;
(2)由(1)得∠DBC=∠DAC,∠BAD=∠CAD,
∴∠DBC=∠BAD,
∵∠BDA为共公角,
∴△BDF∽△ADB,
∴,
∴BD2=AD×DF,
∵DF=y,AD=x,DE=2,
∴xy=4,
∴y与x之间的关系式y=.
解析分析:(1)首先连接BE,由E是内心,易证得∠BED=∠EBC+∠EAC,∠EBD=∠EBC+∠CBD,又由同弧所对的圆周角相等,证得∠EAC=∠CBD,则可得∠EBD=∠BED,即可证得DE=BD;(2)首先根据有两角对应相等的三角形相似,证得△BDF∽△ADB,则可证得:BD2=AD×DF,将已知线段的长代入即可求得x与y的关系式.
点评:此题考查了圆的内心的性质与三角形相似的判定与性质等知识.此题综合性较强,注意数形结合思想的应用.