我们学过平面向量(二维向量)),空间向量(三位向量),二维、三维向量的坐标表示及其运算可以推广到n(n≥3)维向量.n维向量可用?(x1,x2,x3,x4,…,xn)

发布时间:2020-08-01 02:23:13

我们学过平面向量(二维向量)),空间向量(三位向量),二维、三维向量的坐标表示及其运算可以推广到n(n≥3)维向量.n维向量可用?(x1,x2,x3,x4,…,xn)表示.设=(a1,a2,a3,a4,…,an),设=(b1,b2,b3,b4,…,bn),a与b夹角θ的余弦值为.当两个n维向量,=(1,1,1,…,1),=(-1,-1,1,1,…,1)时,cosθ=A.B.C.D.

网友回答

D
解析分析:利用题中对向量运算的推广;利用向量的数量积公式求出两个向量的数量积;利用向量模的坐标公式求出两个向量的模;利用向量的数量积公式表示出夹角余弦,求出夹角.

解答:由题意对运算的推广得,∴故选D

点评:本题考查向量的数量积公式、考查向量模的公式、考查利用向量的数量积公式求向量夹角、考查新定义的题型关键是理解透新定义.
以上问题属网友观点,不代表本站立场,仅供参考!