如图,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,则不正确的结论是A.Rt△ACD和Rt△BCE全等B.OA=OBC.E是AC的中点D.AE=BD
网友回答
C
解析分析:根据HL证Rt△ACD≌Rt△BCE即可判断A;根据以上全等推出AE=BD,再证△AOE≌△BOD,即可判断B和D,根据已知只能推出AE=BD,CE=CD,不能推出AE=CE,即可判断C.
解答:A、∵∠C=∠C=90°,∴△ACD和△BCE是直角三角形,在Rt△ACD和Rt△BCE中∵,∴Rt△ACD≌Rt△BCE(HL),正确;B、∵Rt△ACD≌Rt△BCE,∴∠B=∠A,CB=CA,∵CD=CE,∴AE=BD,在△AOE和△BOD中∵,∴△AOE≌△BOD(AAS),∴AO=OB,正确,不符合题意;AE=BD,CE=CD,不能推出AE=CE,错误,符合题意;D、∵Rt△ACD≌Rt△BCE,∴∠B=∠A,CB=CA,∵CD=CE,∴AE=BD,正确,不符合题意.故选C.
点评:本题考查了全等三角形的性质和判定,主要考查学生的推理能力,题目比较好,但是一道比较容易出错的题目.