已知,如图AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;

发布时间:2020-08-04 18:37:29

已知,如图AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤DE=DC.其中正确结论有A.2个B.3个C.4个D.5个

网友回答

C

解析分析:①AB是直径,易知∠AEB=90°,而∠ABE=45°,AB=AC,从而易求∠ABC和∠ACB,进而可求∠EBC;②连接AD,由于AB=AC,∠ADB=90°,利用等腰三角形三线合一定理可知BD=CD;③在Rt△BCE中,易求∠EBC和∠C,利用BE=tan67.5°?CE,可知BE≠2CE,利用∠BAC=45°,∠AEB=90°,易证△ABE是等腰直角三角形,从而可知AE≠2CE;④由于∠ABE=45°,BAD=22.5°,易得劣弧AE=2劣弧BD,而劣弧BD=劣弧DE,从而易证劣弧AE=2劣弧DE;⑤由圆内接四边形的外角等于它的内对角,得到一对角相等,再由AB=AC,利用等边对等角得到一对角相等,等量代换得到∠DEC=∠ACB,利用等角对等边即可得到DE=DC.

解答:解:①∵∠A=45°,AB是直径,∴∠AEB=90°,∴∠ABE=45°,∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠EBC=67.5°-45°=22.5°,此选项正确;②连接AD,∵AB=AC,AB是直径,∴∠ADB=90°,∴BD=CD,此选项正确;③∵AB是直径,∴∠AEB=90°,由①知∠EBC=22.5°,∠C=67.5°,∴BE=tan67.5°?CE,∴BE≠2CE,在Rt△ABE中,∠AEB=90°,∠BAE=45°,∴∠ABE=45°,∴AE=BE,∴AE≠2CE,此选项错误;④∵∠ABE=45°,BAD=22.5°,∴劣弧AE=2劣弧BD,∵劣弧BD=劣弧DE,∴劣弧AE=2劣弧DE,此选项正确.⑤∵∠DEC为圆内接四边形ABDE的外角,∴∠DEC=∠ABC,又AB=AC,∴∠ABC=∠ACB,∴∠DEC=∠ACB,∴DE=DC,本选项正确,故选C

点评:本题考查了圆周角定理、等腰直角三角形的判定和性质、等腰三角形三线合一定理,解题的关键是求出相应角的度数.
以上问题属网友观点,不代表本站立场,仅供参考!