如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为A.5cmB.6cmC.7cmD.8cm
网友回答
B
解析分析:延长AO交BC于D,过O作BC的垂线,设垂足为E,根据∠A、∠B的度数易证得△ABD是等边三角形,设AB的长为xcm,由此可表示出OD、BD和DE的长;在Rt△ODE中,根据∠ODE的度数,可得出OD=2DE,进而可求出x的值.
解答:解:延长AO交BC于D,作OE⊥BC于E,设AB的长为xcm,∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=x;∵OA=4cm,BC=10cm,∴BE=5cm,DE=(x-5)cm,OD=(x-4)cm,又∵∠ADB=60°,∴DE=OD,∴x-5=(x-4),解得:x=6.故选B.
点评:此题主要考查了等边三角形的判定和性质以及勾股定理的应用.解答此题时,通过作辅助线将半径OB置于直角三角形OBE中,从而利用勾股定理求得.