如图,已知长方形ABCD中AB=8??BC=10,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,则DE的长为A.5B.3C.2D.4
网友回答
A
解析分析:根据矩形的性质得DC=8,AD=10,再根据折叠的性质得到AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理易得BF=6,设DE=x,则EF=x,EC=8-x,在Rt△CEF中,利用勾股定理可求出x的值.
解答:∵AB=8,BC=10,∴DC=8,AD=10,又∵将△ADE折叠使点D恰好落在BC边上的点F,∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴BF==6,∴FC=10-6=4,设DE=x,则EF=x,EC=8-x,在Rt△CEF中,EF2=FC2+EC2,即x2=42+(8-x)2,解得x=5,即DE的长为5.故选A.
点评:本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考查了矩形的性质以及勾股定理.