某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该学生所得的三项成绩(成绩均为

发布时间:2020-07-30 12:47:32

某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频率分布直方图,已知从左至右前4个小组的频率分别为0.02,0.1,0.12,0.46.
下列说法:
(1)学生的成绩≥27分的共有15人;
(2)学生成绩的众数在第四小组(22.5~26.5)内;
(3)学生成绩的中位数在第四小组(22.5~26.5)范围内.
其中正确的说法有A.0个B.1个C.2个D.3个

网友回答

C
解析分析:由五组的数据的频率和为1求得第五组的频率,然后由每组人数=总人数×该组频率,得到第五组的人数,可判断(1)的正误;由众数的概念判断众数落在那一个小组,可判断(2)的正误;由中位数的概念可判断(3)的正误.

解答:从左至右前5个小组的频率之和为1;且前四个分别为0.02,0.1,0.12,0.46;故第五组的频率是1-(0.02+0.1+0.12+0.24)=0.3,学生的成绩≥27分的在第五组,总共有50名学生,故第五组共有50×0.3=15人,故(1)正确;观察直方图:第四组人数最多,但学生成绩的众数不一定在第四小组(22.5~26.5)内,故(2)不正确;(3)学生成绩的中位数是第25个数和第26个数的平均数,应该落在第四组,故(3)正确.故选C.

点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.
以上问题属网友观点,不代表本站立场,仅供参考!