设正三角形的边长为a,它的外接圆半径为R,内切圆半径为r,高为h,则r:R:h=?

发布时间:2021-02-21 08:57:02

设正三角形的边长为a,它的外接圆半径为R,内切圆半径为r,高为h,则r:R:h=?

网友回答

(一)先说答案:
r:R:h=1:2:3
(二)步骤:
1、画出辅助线:设正三角形ABC,外接圆心,内切圆心皆为D,连接AD,BD;过D作线段DE垂直BC,交BC于E.
2、因为角DBE=30度,根据直角三角形30度角所对的边(DE)等于斜边(BD)的一半,设DE=x,则BD=2x,则AD=BD=2x(外接圆半径相等),则高AE=AD+DE=2x+x=3x
3、由上可得r:R:h=DE:BD:AE=x:2x:3x=1:2:3
(如果哪个地方看不懂,可以指出来)
以上问题属网友观点,不代表本站立场,仅供参考!