如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,若∠DAC=20°,∠ACB=72°,则∠FEG=A.64°B.23°C.26°D.46°
网友回答
C
解析分析:利用EG、FG分别是△ABC和△ADC两个三角形的中位线,求出EG=FG,从而得出∠FGC和∠EGC,再根据EG=FG,利用三角形内角和定理即可求出∠FEG的度数.
解答:∵E、F、G分别是AB、CD、AC的中点,∴EG、FG分别是△ABC和△ADC两个三角形的中位线,∴EG∥BC,FG∥AD,且EG=FG==,∴∠FGC=∠DAC=20°,∠EGC=180°-∠ACB=108°,∴∠EGF=∠FGC+∠EGC=128°,又∵EG=FG,∴∠FEG=(180°-∠EGF)=(180°-128°)=26°.故选C.
点评:此题主要考查学生对三角形中位线定理,等腰三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,有一定难度,属于中档题.