填空题数学归纳法证明(n+1)+(n+2)+…+(n+n)=的第二步中,当n=k+1时等式左边与n=k时等式左边的差等于________.
网友回答
3k+2解析分析:根据条件分别求出n=k时左边的式子:(k+1)+(k+2)+…+(k+k),n=k+1时左边的式子:左边=(k+1+1)+(k+1+2)+…+(k+1+k-1)+(k+1+k)+(k+1+k+1),从而可求出当n=k+1时等式左边与n=k时等式左边的差.解答:由题意,n=k时,则(k+1)+(k+2)+…+(k+k)=当n=k+1时,左边=(k+1+1)+(k+1+2)+…+(k+1+k-1)+(k+1+k)+(k+1+k+1)=(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)=(k+1)+(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)-(k+1)=+3k+2∴当n=k+1时等式左边与n=k时等式左边的差等于3k+2故