解答题已知函数f(x)=.(1)写出f(x)的定义域;(2)判断并证明函数f(x)的奇

发布时间:2020-07-09 01:30:59

解答题已知函数f(x)=.
(1)写出f(x)的定义域;
(2)判断并证明函数f(x)的奇偶性;
(3)求函数f(x)值域.

网友回答

解:(1)由于 5x>0 恒成立,故函数函数f(x)=?恒有意义,故此函数的定义域为 R.
(2)由于f(-x)===-=-f(x),所以f(x)为奇函数.
(3)f(x)==1-,因为5x>0,所以,5x+1>1,即0<<2,
即-2<-<0,即-1<1-<1,所以,f(x)的值域为(-1,1).解析分析:(1)由于 5x>0 恒成立,故函数函数f(x)=?恒有意义.(2)由于f(-x)===-=-f(x),所以f(x)为奇函数.?(3)f(x)变形为 1-,根据不等式的性质求得0<<2,进而可得-1<1-<1,得到函数的值域.点评:本题考查指数函数的单调性及特殊点,判断函数的奇偶性,求函数的定义域、值域的方法,不等式性质的应用,函数解析式的变形是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!