如图,△ABC中,D为BC中点,E为AD的中点,BE的延长线交AC于F,则为A.1:5B.1:4C.1:3D.1:2

发布时间:2020-07-30 07:33:58

如图,△ABC中,D为BC中点,E为AD的中点,BE的延长线交AC于F,则为A.1:5B.1:4C.1:3D.1:2

网友回答

D

解析分析:过D作BF的平行线,交AC边于G,即:DG∥BF,又D为BC中点可得出:△CDG∽△CBF,即:==,CG=FC=FG;同理可得:△AEF∽△ADG,AF=AG=FG,所以AF=FG=GC,即:==.

解答:解:过D作BF的平行线,交AC边于G,如下图所示:∵D为BC中点,DG∥BF∴∠CGD=∠CFB又∵∠C=∠C∴△CDG∽△CBF∴==,即:CG=CF=FG又E为AD的中点,BE的延长线交AC于F,DG∥BF同理可得:△AEF∽△ADG∴==,即:AF=AG=FG∴AF=FG=GC∴===1:2故选:D.

点评:本题主要考查相似三角形的判定与性质,关键在于找出条件判断两个三角形相似,再运用相似三角形的性质求解.
以上问题属网友观点,不代表本站立场,仅供参考!