如图,小红作出了边长为1的第1个正三角形△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2B2C2,作出了第二个正三角形△A2B2C

发布时间:2020-07-30 14:34:47

如图,小红作出了边长为1的第1个正三角形△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2B2C2,作出了第二个正三角形△A2B2C2,算出第2个正△A2B2C2的面积,用同样的方法作出了第3个正△A3B3C3,算出第3个正△A3B3C3的面积,依此方法作下去,由此可得第n次作出的正△AnBnCn的面积是________.

网友回答


解析分析:过A1作A1D⊥B1C1于D,求出高A1D,求出△A1B1C1的面积,根据三角形的中位线求出B2C2=B1C1,A2B2=A1B1,A2C2=A1C1,推出△A2B2C2∽△A1B1C1,得出=同理△A3B3C3∽△A2B2C2,推出=得出规律=,代入求出即可.

解答:过A1作A1D⊥B1C1于D,∵等边三角形A1B1C1,∴B1D=,由勾股定理得:A1D=,∴△A1B1C1的面积是×1×=,∵C2、B2、A2分别是A1B1、A1C1、B1C1的中点,∴B2C2=B1C1,A2B2=A1B1,A2C2=A1C1,即===,∴△A2B2C2∽△A1B1C1,且面积比是1:4,=同理△A3B3C3∽△A2B2C2,且面积比是1:4,=…∴==×=故
以上问题属网友观点,不代表本站立场,仅供参考!