两个大小不同的等腰直角三角形三角板如图所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.下列说法不正确的是A.△ADC≌△AEBB.△DCE是等腰三角形C.DC=BED.DC⊥BE
网友回答
B
解析分析:根据题意,易证△ADC≌△AEB,根据其性质,可得选项A、C是正确的,不符合题意;又∠ADC=∠AEB,∠AED+∠CDE+∠ADC=90°,所以,∠AED+∠CDE+∠AEB=90°,可排除D.
解答:∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AE=AD,∴∠BAC=∠DAE=90°,∴∠BAC+∠CAE=∠DAE+∠CAE,∴∠BAE=∠CAD,∴△ADC≌△AEB,故选项A的说法正确;∴DC=BE,故选项C的说法正确;∵△ACD≌△ABE,∴∠ACD=∠B=45°=∠ACB,∴∠DCB=45°+45°=90°,∴DC⊥BE,故选项D的说法正确;选项B的说法不正确;故选B.
点评:本题主要考查了全等三角形的判定与性质和等腰直角三角形的性质,证明两个三角形全等是解答本题的关键.