点A是以MN为直径的半圆上一个靠近点M的三等分点,B是弧AM的中点,P是直径MN上一个动点,⊙O的半径为5,则PA+PB的最小值为________.
网友回答
5
解析分析:本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.
解答:解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN^的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=5,∴A′B=5.∴PA+PB=PA′+PB=A′B=5.故