解答题某公司生产一种产品的固定成本为0.5万元,但每生产100件需再增加成本0.25万元,市场对此产品的年需求量为500件,年销售收入(单位:万元)为R(t)=5t-(0≤t≤5),其中t为产品售出的数量(单位:百件).
(1)把年利润表示为年产量x(百件)(x≥0)的函数f(x);
(2)当年产量为多少件时,公司可获得最大年利润?
网友回答
解:(1)当0≤x≤5时,f(x)=R(x)-0.5-0.25x
=-x2+4.75x-0.5;当x>5时,
f(x)=R(5)-0.5-0.25x=12-0.25x,
故所求函数解析式为.
(2)0≤x≤5时,f(x)=-(x-4.75)2+10.78125,
∴在x=4.75时,
f(x)有最大值10.78125,当x>5时,
f(x)=12-0.25x<12-0.25×5
=10.75<10.78125,
综上所述,当x=4.75时,f(x)有最大值,即当年产量为475件时,公司可获得最大年利润.解析分析:(1)分类讨论:①当0≤x≤5时,②当x>5时,分别写出函数f(x)的表达式,最后利用分段函数的形式写出所求函数解析式即可;(2)分别求出当0≤x≤5时,及当x>5时,f(x)的最大值,最后综上所述,当x为多少时,f(x)有最大值,即当年产量为多少件时,公司可获得最大年利润.点评:本题考查了分段函数,以及函数与方程的思想,属于基础题.函数模型为分段函数,求分段函数的最值,应先求出函数在各部分的最值,然后取各部分的最值的最大值为整个函数的最大值,取各部分的最小者为整个函数的最小值.