正方形ABCD的中心为O,面积为1989cm2.P为正方形内一点,且∠OPB=45°,PA:PB=5:14.则PB=________.

发布时间:2020-07-29 17:01:42

正方形ABCD的中心为O,面积为1989cm2.P为正方形内一点,且∠OPB=45°,PA:PB=5:14.则PB=________.

网友回答

42cm

解析分析:首先证出O,P,A,B四点共圆,由此推出∠APB=90°,设PA=5x,PB=14x,根据勾股定理即可求出x,进一步得到PB的长度.

解答:解:连接OA,OB,∵正方形ABCD的中心为O,∠OPB=45°,∴∠OAB=∠OPB=45°,∠OBA=45°,∴O,P,A,B四点共圆,∴∠APB=∠AOB=180°-45°-45°=90°,在△OAB中由勾股定理得:PA2+PB2=AB2=1989,由于PA:PB=5:14,设PA=5x,PB=14x,(5x)2+(14x)2=1989,解得:x=3,∴PB=14x=42.故
以上问题属网友观点,不代表本站立场,仅供参考!