已知函数),
(1)当x为何值时,f(x)取得最大值,并求函数f(x)的值域;
(2)解不等式f(x)≥1.
网友回答
解:(1)∵函数=2(-cosx)=2sin(x-),x∈[0,π],
∴x-∈[-,],故当 x-=时,即x=时,函数取得最大值为2.
再由当 x-=-时,函数取得最小值为1,故函数的值域为[1,2].
(2)由(1)可得,当x∈[0,π]时,f(x)≥1恒成立,故不等式f(x)≥1在[0,π]上的解集为∈[0,π].
解析分析:(1)利用两角和差的正弦公式化简函数的解析式为y=2sin(x-),根据x的范围可得 x- 的范围,从而求得函数f(x)最大值以及它的值域.(2)由(1)可得,当x∈[0,π]时,f(x)≥1恒成立,由此求得不等式f(x)≥1在[0,π]上的解集.
点评:本题主要考查两角和差的正弦公式的应用,正弦函数的定义域和值域,属于中档题.