解答题集合A是由适合以下性质的函数f(x)组成的:对于任意的x≥0,f(x)∈(1,4],且f(x)在[0,+∞)上是减函数.
(1)判断函数f1(x)=2-及f2(x)=1+3?((x≥0)是否在集合A中?试说明理由;
(2)对于(1)中你认为是集合A中的函数f(x),不等式f(x)+f(x+2)≤k对于任意的x≥0总成立.求实数k的取值范围.
网友回答
解:(1)∵f1(49)=2-=-5?(1,4],∴f1(x)不在集合A中.…(3分)
又∵x≥0,∴0<(≤1,∴0<3?(≤3,从而1<1+3?(≤4.∴f2(x)∈(1,4].
又f2(x)=1+3?(在[0,+∞)上为减函数,∴f2(x)=1+3?(在集合A中.…(7分)
(2)当x≥0时,f(x)+f(x+2)=2+?(≤.
又由已知f(x)+f(x+2)≤k对于任意的x≥0总成立,∴k≥.
因此所求实数k的取值范围是[,+∞).??????????????????????…(14分)解析分析:(1)要判断函数是否在集合A中,只要判断对于任意的x≥0f(x)是否满足f(x)∈(1,4],且f(x)在(0,+∞)单调递减即可(2)由(1)可知,当x≥0时,,从而有f(x)+f(x+2)=2+?(≤k在(0,+∞)上恒成立,从而转化为求解2+在(0,+∞)上的最大值即可点评:本题以集合的关系为载体主要考查了函数的单调性于函数的值域的求解,而函数的恒成立的问题的解决常转化为求解函数的最值.