在平面直角坐标系xOy中,直线l:y=x+m与椭圆C:+=1相交于A、B两点,且OA+OB>AB.
(1)求m的取值范围;
(2)若以AB为直径的圆经过O点,求直线l的方程.
网友回答
解:(1)由方程组得:5x2+8mx+(4m2-16)=0,…(2分)
因为直线 l椭圆C有两个交点,所以△=(8m)2-4×5×(4m2-16)>0…(4分),
解得-<m<…(5分),
又因为OA+OB>AB,所以O?l,m≠0,所以m的取值范围是(-,0)∪(0,)…(6分).
(2)设A(x1,y1)、B(x2,y2),由(1)得x1+x2=-,x1?x2=,
以AB为直径的圆经过点,所以∠AOB=90°…(8分),
=x1?x2+y1?y2=0…(9分),
由y1=x1+m,y2=x2+m,…(10分),
得=x1?x2+y1?y2=2x1?x2+m(x1+x2)+m2
=-+m2=0…(12分),
解得m=±…(13分),所以直线l的方程是:
y=x+或y=x-…(14分).
解析分析:(1)联立,直线 l椭圆C有两个交点,由△>0即可求得m的范围,但要注意OA+OB>AB的应用,去掉不符合题意的m的值;(2)设A(x1,y1)、B(x2,y2),由(1)得x1+x2=-,x1?x2=,由以AB为直径的圆经过O点得∠AOB=90°,从而由=0可求得m的值,于是可得直线l的方程.
点评:本题考查直线与圆锥曲线的综合问题,着重考查直线与圆锥曲线的方程联立,韦达定理的使用,侧重方程思想,化归思想的考查,易错点在于(1)中忽视m≠0的情况,属于综合性强,难度大的题目.