若数列{an}满足an=qn(q>0,n∈N*),以下命题正确的是
(1){a2n}是等比数列;
(2)是等比数列;
(3){lgan}是等差数列;
(4){lgan2}是等差数列.
A.(1)(3)
B.(3)(4)
C.(1)(2)(3)(4)
D.(2)(3)(4)
网友回答
C解析分析:首先根据,=q和lg=lgan+1-lgan=lgq.判断数列{an}为等比数列,{lgan}是等差数列,根据等比数列的性质进而判断{a2n},,{an2}均是等比数列.根据{an2}均是等比数列,可判断{lgan2}是等差数列.解答:∵an=qn,∴=q,lg=lgan+1-lgan=lgq.∴数列{an}为等比数列,{lgan}是等差数列∴{a2n},均是等比数列.∴{lgan2}也是等差数列.故(1)(2)(3)(4)均正确.故选C点评:本题主要考查了等比数列的性质.若{an}是等比数列,{bn}也是等比数则{a2n},{a3n}…是等比数列,{can},c是常数,{anbn},{}是等比数列