填空题若一个正方形的四个顶点都在双曲线C上,且其一边经过C的焦点,则双曲线C的离心率是

发布时间:2020-07-09 03:51:36

填空题若一个正方形的四个顶点都在双曲线C上,且其一边经过C的焦点,则双曲线C的离心率是________.

网友回答

解析分析:设出双曲线C的方程-=1,依题意,a2+b2=c2,且(c,c)是双曲线-=1上的点,从而可得到关于a,c的关系式,解之即可.解答:∵正方形的四个顶点都在双曲线C:-=1上,其一边经过C的焦点,则有a2+b2=c2,且(c,c)是双曲线-=1上的点,所以-=1消去b2得c4-3a2?c2+a4=0,∴=,由于c2>a2,∴===,∴离心率e==.故
以上问题属网友观点,不代表本站立场,仅供参考!