如图,圆O的方程为x2+y2=2,直线l是椭圆的左准线,A、B是该椭圆的左、右焦点,点P为直线l上的一个动点,直线AQ⊥OP交圆O于点Q.
(Ⅰ)若点P的纵坐标为4,求此时点Q的坐标,并说明此时直线PQ与圆O的位置关系;
(Ⅱ)求当∠APB取得最大值时P点的坐标.
网友回答
解:(Ⅰ)由题意得A(-1,0),B(1,0),直线l的方程为x=-2,
∴P(-2,4),
∴,
∵AQ⊥OP,
∴.
∴直线AQ的方程为y=,即x-2y+1=0.
由,消去x并整理得5y2-4y-1=0.
解得y=1,或y=-.
当y=1时x=1,当 y=-时,xx=.
∴Q点的坐标为 (,-)或(1,1).
当Q为(1,1)时,直线PQ的方程x+y-2=0.
圆心O到直线的距离为 ,∴PQ与圆O相切.
同理可得,当Q为 时,PQ也与圆O相切.
(Ⅱ)不妨设P点在x轴上方,设P(-2,m)(m>0).
设准线l与x轴交于点Q,记 BPQ=α,APQ=β,
∴tan∠APB=tan(α-β)
=
=
=
=.
当且仅当m= 时取得等号.
显然 APB为锐角,故 APB的最大值为30°,
此时P点的坐标(-2, ).
解析分析:(Ⅰ)由题意得A(-1,0),B(1,0),直线l的方程为x=-2,直线AQ的方程为x-2y+1=0.由,解得Q点的坐标为 (,-)或(1,1).由此能推导出PQ与圆O相切.(Ⅱ)设P点在x轴上方,设P(-2,m)(m>0).设准线l与x轴交于点Q,记 BPQ=α,APQ=β,所以tan∠APB=tan(α-β)==.由此能求出当∠APB取得最大值时P点的坐标.
点评:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.