由方程(x^2+y^2)^3-3*(x^2+y^2)+1=0确定y为x的函数,求dy/dx和d^2y

发布时间:2021-02-28 05:23:03

由方程(x^2+y^2)^3-3*(x^2+y^2)+1=0确定y为x的函数,求dy/dx和d^2y/dx^2

网友回答

(2x+2yy)[3(x^2+y^2)^2]-3*(2x+2yy')=0
2yy'[3(x^2+y^2)^2-3]=6x-6x(x^2+y^2)^2
y'=-x/y
y''=-1/y+xy'/y^2=-1/y-x^2/y^3
dy/dx=-x/y
d''y/dx''=-1/y-x^2/y^3
以上问题属网友观点,不代表本站立场,仅供参考!