已知函数f(x)=,g(x)=x3-2a2x+a3-4
(I)求f(x)的单调区间;
(II)若存在实数a使得对于任意给定x1∈[0,t],都有x2∈[0,2],使f(x1)=g(x2),求t的最大值.
网友回答
解:(I)函数的定义域为(-∞,3)∪(3,+∞)
求导函数可得f′(x)==
令f′(x)>0,可得x<1或x>5;令f′(x)<0,x≠3可得1<x<3或3<x<5
∴f(x)的单调递增区间为(-∞,1),(5,+∞);f(x)的单调递减区间为(1,3),(3,5);
(II)当x∈[0,2]时,在[0,1]上单调增,在[1,2]上单调递减,∴f(x)∈[-4,-3]
若命题成立,等价于g(x)在[0,t]上的值域是[-4,-3]的子集
∵g(x)=x3-2a2x+a3-4
∴g′(x)=3x2-2a2=3(x+)(x-)
①当a=0时,g′(x)=3x2>0,∴g(x)在R上是增函数
∴0≤x≤t时,-4≤g(x)≤t2-4
∴只需t2-4≤-3,∴-1≤t≤1
②a≠0,∵g(0)=a3-4
要使命题成立,只需-4≤g(0)≤-3,∴-4≤a3-4≤-3
∴0≤a≤1
∴g′(x)=3(x+)(x-)
∴函数g(x)在(-∞,-)上单调增,在(-,)上单调减,在(,+∞)上单调增
当时,g(x)在处取得最小值,∴<-4舍去;
当时,g(x)在x=t处取得最小值g(t),g(t)=t3-2a2t+a3-4,只需g(t)≥-4
∴t3-2a2t+a3-4≥-4
∴(t-a)(t+)(t-)≥0
从而t的取值的最大值为
综上所述,t的最大值是1.
解析分析:(I)函数的定义域为(-∞,3)∪(3,+∞),求导函数,令f′(x)>0,可得f(x)的单调递增区间;令f′(x)<0,x≠3,可得f(x)的单调递减区间;(II)确定x∈[0,2]时,函数f(x的值域,若命题成立,等价于g(x)在[0,t]上的值域是[-4,-3]的子集,对g(x)=x3-2a2x+a3-4,求导函数,再进行分类讨论.①当a=0时,g(x)在R上是增函数,从而0≤x≤t时,-4≤g(x)≤t2-4,故只需t2-4≤-3;②a≠0,要使命题成立,只需-4≤g(0)≤-3,从而g′(x)=3(x+)(x-),确定函数的单调性,从而可得函数g(x)的最小值,从而可求t的取值的最大值.
点评:本题以函数为载体,考查导数知识的运用,考查函数的单调性,考查存在性问题,考查分类讨论的数学思想,正确运用导数,合理分类是关键.