解答题已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求实数a的取值范围.
网友回答
解:(1)∵0<x2-x≤2
∴-1≤x<0或1<x≤2
∴A=[-1,0)∪(1,2]
(2)∵x2-x+a(1-a)≤0
∴(x-a)[x-(1-a)]≤0
∵B∪A=[-1,2]
∴
得-1≤a≤0或1≤a≤2
∴a的取值范围为[-1,0]∪[1,2]解析分析:(1)解二次不等式组0<x2-x≤2,可求出-1≤x<0或1<x≤2,化为区间形式后,即可得到集合A;(2)二次不等式x2-x+a(1-a)≤0,可转化为(x-a)[x-(1-a)]≤0,结合B∪A=[-1,2]及(1)中结论,可得,进而得到a的取值范围.点评:本题考查的知识点是集合关系中的参数取值问题,一元二次不等式的解法,其中熟练掌握一元二次不等式的解法是解答本题的关键.