已知数列{an}中,a1=3,且满足,
(Ⅰ)求证:数列是等差数列;
(Ⅱ)求数列{an}的前n项和Sn.
网友回答
(Ⅰ)证明:∵,
∴,
∴数列是公差的等差数列.
(Ⅱ)解:由(Ⅰ)知是等差数列,
∴=,
∴,
∴,①
(2n-1)?3n-1+(2n+1)?3n,②
①-②,得-2Sn=3+2(3+32+33+…+3n-1)-(2n+1)?3n
=3+2×-(2n+1)?3n
=3+3n-3-(2n+1)?3n
=-2n?3n,
∴.
解析分析:(Ⅰ)由,知,由此能证明数列是等差数列.
(Ⅱ)由是等差数列,知=,故,所以,由此利用错位相减法能求出.
点评:本题考查等差数列的证明和数列前n项和的求法,解题时要认真审题,注意等差数列的性质和错位相减法的合理运用.