解答题已知数列{An}的前n项和为Sn,a1=1,满足下列条件
①?n∈N*,an≠0;
②点Pn(an,Sn)在函数f(x)=的图象上;
(I)求数列{an}的通项an及前n项和Sn;
(II)求证:0≤|Pn+1Pn+2|-|PnPn+1|<1.
网友回答
(I)解:由题意,
当n≥2时an=Sn-Sn-1=,
整理,得(an+an-1)(an-an-1-1)=0,
又?n∈N*,an≠0,所以an+an-1=0或an-an-1-1=0,
当an+an-1=0时,a1=1,,
得,;
当an-an-1-1=0时,a1=1,an-an-1=1,
得an=n,.
(II)证明:当an+an-1=0时,,
|Pn+1Pn+2|=|PnPn+1|=,所以|Pn+1Pn+2|-|PnPn+1|=0,
当an-an-1-1=0时,,
|Pn+1Pn+2|=,|PnPn+1|=,
|Pn+1Pn+2|-|PnPn+1|=-
=
=,
因为>n+2,>n+1,
所以0<<1,
综上0≤|Pn+1Pn+2|-|PnPn+1|<1.解析分析:(I)由题意,当n≥2时an=Sn-Sn-1,由此可得两递推式,分情况可判断数列{an}为等比数列或等差数列,从而可求得通项an,进而求得Sn;(II)分情况讨论:当当an+an-1=0时,,计算可得|Pn+1Pn+2|=|PnPn+1|=,从而易得|Pn+1Pn+2|-|PnPn+1|的值;当an-an-1-1=0时,,利用两点间距离公式可求得|Pn+1Pn+2|,|PnPn+1|,对|Pn+1Pn+2|-|PnPn+1|化简后,再放缩即可证明结论;点评:本题考查数列与函数的综合,考查分类讨论思想,解决本题的关键是利用an与Sn的关系先求得an.