填空题观察下列等式:(x2+x+1)0=1;(x2+x+1)1=x2+x+1;(x2+

发布时间:2020-07-09 05:35:52

填空题观察下列等式:(x2+x+1)0=1;(x2+x+1)1=x2+x+1;(x2+x+1)2=x4+2x3+3x2+2x+1;(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1;…;可能以推测,(x2+x+1)5展开式中,第五、六、七项的系数和是 ________.

网友回答

141解析分析:利用多项式乘法的法则得到各项的构成方法求出展开式各项的系数和.解答:展开式的第五项是含x6的项;其构成是5个多项式3个出x2,其它都出1;5个多项式2个出x2,2个出x,其它出1;5个多项式1个出x2,4个出x其系数为C53+C52C32+C51=45展开式的第6项同样的方法其系数为C52C31+C51C43+1=51展开式的第7项同样的方法其系数为C52+C51C42+C54=45所以展开式中,第五、六、七项的系数和是35+51+45=141故
以上问题属网友观点,不代表本站立场,仅供参考!