解答题已知函数f(x)=x3-3ax,(a>0).
(1)当a=1时,求f(x)的单调区间;
(2)求函数y=f(x)在x∈[0,1]上的最小值.
网友回答
解:(1)当a=1时,f(x)=x3-3x,所以f'(x)=3x2-3=3(x+1)(x-1).
令f'(x)=0得x=±1,列表:
x(-∞,-1)-1(-1,1)1(1,+∞)f'(x)+0-0+f(x)↗极大值↘极小值↗∴f(x)的单调递增区间是(-∞,-1),(1,+∞);单调递减区间是(-1,1)(6分)
(2)由∵x∈[0,1]
①当0<a<1时,
x01f'(x)-0+f(x)0↗↗1-3a当取得最小值,最小值为.(9分)
②当a≥1时,f'(x)≤0,f(x)在x∈[0,1]上是减函数,当x=1时,f(x)取得最小值,最小值为1-3a.
综上可得:(12分)解析分析:(1)将a=1代入,求出函数的导数,利用导数求出其单调区间即可.(2)求出函数的导数,利用导数研究函数在区间[0,1]上的单调性,求出最小值即可.本题中导数带着参数,故求解时要对其范围进行讨论.点评:本题考查利用导数研究函数在闭区间上的最值,求解的关键是正确求出函数的导数,以及根据参数的取值范围及导数得出函数的单调区间,确定最值的存在位置.列表表示函数的性质比较直观,解题时要善于运用.