如图,已知,AB是⊙O的直径,点C,D在⊙O上,∠ABC=50°,则∠D为A.50°B.45°C.40°D.30°
网友回答
C
解析分析:连接AC,构建直角三角形ABC.根据直径所对的圆周角是90°知三角形ABC是直角三角形,然后在Rt△ABC中求得∠CAB=40°;然后由圆周角定理(同弧所对的圆周角相等)求∠D的度数即可.
解答:解:连接AC.∵AB是⊙O的直径,点C在⊙O上,∴∠ACB=90°(直径所对的圆周角是90°);在Rt△ABC中,∠ACB=90°,∠ABC=50°,∴∠CAB=40°;又∵∠CDB=∠CAB(同弧所对的圆周角相等),∴∠CDB=∠CAB=40°,即∠D=40°.故选C.
点评:本题考查了圆周角定理.解答此题的关键是借助辅助线AC,将隐含是题干中的已知条件△ACB是直角三角形展现出来,然后根据直角三角形的两个锐角互余求得∠CAB=40°.